SIMPLIFYING AND PROVING ALGEBRICALLY

Pearson Edexcel - Monday 8 June 2020 - Paper 3 (Calculator) Higher Tier

1.

15	Proof	M1	for $10x = 7.333$ (7.3) and for finding difference that would lead to a terminating decimal	100x and 1000x, etc could also be used
		A1	for completing algebra to reach $\frac{11}{15}$	

Pearson Edexcel - Thursday 6 June 2019 - Paper 2 (Calculator) Higher Tier

2.

13	$\frac{7x-13}{x-2}$	B1	for factorising eg $(x+5)(x-2)$	
		M1	for a method to divide (x+5) by the algebraic fraction eg (x+5) $\times \frac{(x-1)}{x^2+3x-10}$	Condone incorrect factorising
		M1	for finding 2 fractions with a common denominator or a single fraction eg $\frac{6(x-2)}{x-2} + \frac{(x-1)}{x-2} \text{ or } \frac{6(x-2) + (x-1)}{x-2} \text{ or } $ $\frac{6(x^2+3x-10)}{x^2+3x-10} + \frac{(x+5)(x-1)}{x^2+3x-10} \text{ or } \frac{6(x^2+3x-10) + (x+5)(x-1)}{x^2+3x-10}$	Condone incorrect factorising
		Al	$\frac{7x-13}{x-2}$	

Pearson Edexcel - Tuesday 6 November 2018 - Paper 1 (Non-Calculator) Higher Tier

3.

16	Proof with $\frac{127}{495}$	M1 M1	0.25656 or $0.2 + 0.05656$ or $(10 \times 0.25\mathring{6} =) 2.5\mathring{6}$ or 2.5656 or $(100 \times 0.25\mathring{6} =) 25.6\mathring{5}$ or 256.565 or $(1000 \times 0.25\mathring{6} =) 256.5\mathring{6}$ or 256.5656 for finding two correct recurring decimals that when subtracted would result in a terminating decimal or integer, eg. 256.5656 or 256.5656	
		C1	-2.56 or $25.65 - 0.256or for \frac{254}{990} or \frac{25.4}{99}full proof seen with \frac{127}{495}$	

Pearson Edexcel - Monday 12 November 2018 - Paper 3 (Calculator) Higher Tier

15	proof	C1	for writing an expression for an odd number, eg $2n + 1$ or $2n - 1$ (assuming n is any integer) or states n is even and eg $(n + 1)$ or $(n + 3)$ as odd numbers	
		Cl	for a correct expression of the form $(2n+1)^2 - (2n-1)^2$ expanded eg $4n^2 + 12n + 9 - (4n^2 + 4n + 1)$ or $4n^2 + 4n + 1 - (4n^2 - 4n + 1)$ or $4n^2 + 4n + 1 - (4n^2 - 4n + 1)$ or $4n^2 + 12n - 1$ or $4n^2 + 12n - 1$ or when n is even and eg $4n^2 + 12n - 1$ or $4n^2 + 12n - 1$	Expansion of $(2n-1)^2 - (2n+1)^2$ oe is acceptable
		Cl	for a correct simplified expression as a multiple of 8 eg $8n + 8$ or $8n$ or when n is even and eg $4n + 8$ and full explanation as to why $4(n+2)$ is always a multiple of 8	

Pearson Edexcel - Thursday 2 November 2017 - Paper 1 (Non-Calculator) Higher Tier

5.

15	Proof to reach $\frac{24}{55}$	M1	for $100x = 43.636$ (43.63) or $10x = 4.3636$ (4.36) and $1000x = 436.36$ (436.36)
		M1	(dep) for finding difference that would lead to a terminating decimal
		A1	for completing algebra to reach $\frac{24}{55}$

Pearson Edexcel - Thursday 2 November 2017 - Paper 1 (Non-Calculator) Higher Tier

6.

17	Completes proof	M1	Expands both expressions
			eg $\frac{1}{2}(n^2 + n + n^2 + n + 2n + 2)$ or $n^2 + n$ and $n^2 + n + 2n + 2$ or factorises $\frac{1}{2}(n+1)(n+n+2)$
		C1	Completes proof with explanation and reference to $(n+1)^2$

Pearson Edexcel - Wednesday 8 November 2017 - Paper 3 (Calculator) Higher Tier

7.

19	Proof	M1	starts process to find point of intersection by substituting, eg $(10 + 2y)^2 + y^2 = 20$
	(supported)	M1	for expanding, eg $4y^2 + 20y + 20y + 100$ (3 out of 4 terms correct)
		M1	(dep M2) for 3-term quadratic equation ready for solving, eg $5y^2 + 40y + 80 = 0$
		M1	(dep on previous M1) for method to solve an equation of the form $ay^2 + by + c = 0$, eg by factorising or correct substitution into quadratic formula
		C1	fully correct method leading to $y = -4$ or $x = 2$ or $(y + 4)^2 = 0$ or $(x - 2)^2 = 0$ and statement, eg only one point of intersection so the line is a tangent to the circle

Pearson Edexcel - Thursday 8 June 2017 - Paper 2 (Calculator) Higher Tier

8.

16	M1 M1 C1	for the start of a method to convert 0.22 to a fraction, eg10 $y = 2.22$ or $(y=)\frac{2}{9}$ for the start of a method to convert 0.13636 to a fraction, $10x = 1.3636$ or $100x = 13.6363$ or $1000x = 136.3636$ or $(x=)_{\frac{13.5}{99}}$ or $(x=)_{\frac{13.5}{990}}$ for correct arithmetic and concluding the proof
	M1 M1 C1	for $0.1\dot{3}6 \times 0.\dot{2} = 0.\dot{0}\dot{3}$ (= z) for complete method to find two appropriate recurring decimals the difference of which is a rational number, eg. $100z = 3.0303$, (z =) 0.0303 or $\frac{3}{99}$ for correct arithmetic and concluding the proof

Pearson Edexcel - Thursday 25 May 2017 - Paper 1 (Non-Calculator) Higher Tier

9.

4	$x^2 + 6x = 1$	M1	writes the area using algebraic terms e.g. $(x + 3) \times (x + 3)$ or at least two correct area expressions which may be written on the diagram or x given as $\sqrt{10} - 3$
		Ml	expands and includes the given $10 \text{ e.g. } x^2 + 3x + 3x + 9 = 10$; condone one error in the four terms when expanding or $10 - 3\sqrt{10} - 3\sqrt{10} + 9 + 6\sqrt{10} - 18$ (=1) condone 1 error in the 6 terms
		A1	rearranges to give the given equation or shows surd expression simplifies to 1

Pearson Edexcel - Thursday 25 May 2017 - Paper 1 (Non-Calculator) Higher Tier

10.

16	2(2n-3)	C1	correct expansion of brackets to give at least 3 terms from $n^2-2n-2n+4$
	even	C1	arrives at n^2-2-n^2+4n-4 oe
		C1	reduces to $2(2n-3)$ or $4n-6$
		C1	for conclusion e.g. $2(2n-3)$ always even, $4n-6$ is always even since both are even numbers, they are multiples of 2.

Pearson Edexcel - Thursday 25 May 2017 - Paper 1 (Non-Calculator) Higher Tier

11.

22		Proof	B1 M1	(indep) for stating $\cos 30 = \frac{\sqrt{3}}{2}$ for $PQ^2 = 10^2 + 10^2 - 2 \times 10 \times 10 \times \cos PBQ$ or $AC^2 = x^2 + x^2 - 2 \times x \times x \times \cos 30 \ (=x^2(2-\sqrt{3}))$ oe
	$\cos PBQ = \frac{10^2 + 10^2 - x^2(2 - \sqrt{3})}{200}$		M1 M1	for $\cos PBQ = \frac{10^2 + 10^2 - PQ^2}{2 \times 10 \times 10}$ (implies previous M1) for $\cos PBQ = \frac{10^2 + 10^2 - (x^2 + x^2 - 2 \times x \times x \times \cos 30)}{2 \times 10 \times 10}$
	$=\frac{200-x^2(2-\sqrt{3})}{200}$		Al	conclusion of proof with all working seen

Pearson Edexcel - Specimen Papers Set 2 - Paper 3 (Calculator) Higher Tier

12.

17	proof	C1	starts proof eg $n(n+1)$ or $(n-1)\times n$
	_	C1	$n(n+1) + n+1$ or $(n-1) \times n + n$
		C1	for convincing proof including $(n+1)^2$ or n^2

Pearson Edexcel - Specimen Papers Set 2 - Paper 3 (Calculator) Higher Tier

13.

19		proof leading to $\frac{7}{22}$	M1	for finding two correct recurring decimals that when subtracted would result in a terminating decimal or integer with intention to subtract eg $x = 0.31818, 100x = 31.81818$ fully correct proof
----	--	---------------------------------	----	---

Pearson Edexcel - Specimen Papers Set 1 - Paper 1 (Non-Calculator) Higher Tier

20	proof	M1	for any two consecutive integers expressed algebraically eg $n + 1$ and n	for sight of $p^2 - q^2 = (p - q)(p + q)$
	(supported)	M1	(dep) for the difference between the squares of "two consecutive integers" expressed algebraically eg $(n + 1)^2 - n^2$	for deduction that $p - q = 1$
		A1	for correct expansion and simplification of difference of squares eg $2n+1$	for linking these two statements eg substitution of 1 for $p-q$
		C1	for showing statement is correct (with supportive evidence) eg $n + n + 1 = 2n + 1$ and $(n + 1)^2 - n^2 = 2n + 1$	for fully stated proof and deduction eg p^2 $-q^2 = 1 \times (p+q) = p+q$

Pearson Edexcel - Specimen Papers Set 1 - Paper 2 (Calculator) Higher Tier

15.

13	$(3x-1)(4x^2+20x-$	Fully correct	M1	for method to find the product of any two linear expressions; eg. 3 correct terms or
	3x - 15	algebra to		4 terms ignoring signs
		show given	M1	(dep) for method of 6 products, 4 of which are correct (ft their first product)
	$(x+5)(12x^2-4x-$	result	A1	for fully accurate working to give the required result
	9x + 3)			
	$(4x-3)(3x^2-x+$			
	15x - 5			

Pearson Edexcel - Specimen Papers Set 1 - Paper 2 (Calculator) Higher Tier

16.

24	Proof	C1	for joining AO (extended to D) and considering angles in two triangles (algebraic notation may be used here)
		C1	for using isosceles triangle properties to find angle <i>BOD</i> (eg. $x + x = 2x$) or angle <i>COD</i> (eg. $y + y = 2y$)
		C1	for angle $BOC = 2x + 2y$ $[= 2 \times \text{angle } BAO + 2 \times \text{angle } CAO]$
		C1	for completion of proof with all relevant reasons given, eg. base <u>angles</u> of <u>isosceles</u> triangle are <u>equal</u> and sum of <u>angles</u> at a <u>point</u> is <u>360°</u>

Pearson Edexcel - Sample Paper 2 - (Calculator) Higher Tier

17.

14	$(4n^2+2n+2n+1) - (2n+1) = 4n^2+4n+1-2n-1$	proof (supported)	M1	for 3 out of 4 terms correct in the expansion of $(2n+1)^2$ or $(2n+1)\{(2n+1)-1\}$
	$= 4n^2 + 2n$ $= 2n(2n+1)$		P1	for $4n^2 + 2n$ or equivalent expression in factorised form
			C1	for convincing statement using $2n(2n+1)$ or $2(2n^2+n)$ or $4n^2+2n$ to prove the result

Pearson Edexcel - Sample Paper 2 - (Calculator) Higher Tier

15	23 90	M1 For a fully complete method as far as finding two correct decimals that, when subtracted, give a terminating decimal (or integer) and showing intention to subtract eg $x = 0.25$ so $10x = 2.55$ then $9x = 2.3$ leading to
		A1 correct working to conclusion

Pearson Edexcel - Thursday 4 June 2015 - Paper 1 (Non-Calculator) Higher Tier

19.

21		Proof	3	M1 for $(x =) 0.04545()$
				or $1000x = 45.4545()$, accept $1000x = 45.\dot{4}\dot{5}$
				or $100x = 4.54545()$, accept $100x = 4.54$
				or $10x = 0.4545()$, accept $10x = 0.45$
				M1 for finding the difference between two correct, relevant recurring
				decimals for which the answer is a terminating decimal
				A1 (dep on M2) for completing the proof by subtracting and
				cancelling to give a correct fraction eg $\frac{45}{990} = \frac{1}{22}$ or $\frac{4.5}{99} = \frac{1}{22}$

Pearson Edexcel - Monday 8 June 2015 - Paper 2 (Calculator) Higher Tier

20.

20		Shown	3	M1 for correct expansion of $(n+3)^2$ or $(n-3)^2$ eg $(n+3)^2 = n^2 + 6n + 9$ or $(n-3)^2 = n^2 - 6n + 9$ M1 for correct expansion of complete expression, eg $(n^2 + 6n + 9) - (n^2 - 6n + 9)$ A1 for 12n and conclusion
				M1 for $[n+3+n-3][n+3-(n-3)]$) M1 for $2n\times 6$ A1 for conclusion

Pearson Edexcel - Friday 13 June 2014 - Paper 2 (Calculator) Higher Tier

21.

21	(a)	$y^2 - 2y - 5y + 10$	$y^2 - 7y + 10$	2	M1 for all 4 terms correct (condone incorrect signs) or 3 out of 4 terms correct with correct signs A1 cao
	*(b)	$(4n^{2} + 2n + 2n + 1)$ $- (2n + 1)$ $= 4n^{2} + 4n + 1 - 2n - 1$ $= 4n^{2} + 2n$ $= 2n(2n + 1)$	Proof	3	M1 for 3 out of 4 terms correct in the expansion of $(2n+1)^2$ or $(2n+1)\{(2n+1)-1\}$ A1 for $4n^2+2n$ or equivalent expression in factorised form C1 for convincing statement using $2n(2n+1)$ or $2(2n^2+n)$ or $4n^2+2n$ to prove the result

Pearson Edexcel - Thursday 28 February 2013 - Paper 1 (Non-Calculator) Higher Tier

*21	$(n+1)^2 - n^2$ = $n^2 + 2n + 1 - n^2 = 2n + 1$	proof	4	M1 for any two consecutive integers expressed algebraically eg n and n +1
	(n+1) + n = 2n+1 OR			M1(dep on M1) for the difference between the squares of 'two consecutive integers' expressed algebraically eg $(n + 1)^2 - n^2$
	$(n+1)^2 - n^2$ = $(n+1+n)(n+1-n)$ = $(2n+1)(1) = 2n+1$			A1 for correct expansion and simplification of difference of squares, eg $2n+1$
	(n+1) + n = 2n+1 OR			C1 (dep on M2A1) for showing statement is correct, eg $n + n + 1 = 2n + 1$ and $(n + 1)^2 - n^2 = 2n + 1$ from correct supporting algebra
	$n^{2} - (n+1)^{2} = n^{2} - (n^{2} + 2n + 1) =$ $-2n - 1 = -(2n+1)$ Difference is $2n + 1$ $(n+1) + n = 2n + 1$			

Pearson Edexcel - Thursday 8 November 2012 - Paper 2 (Calculator) Higher Tier

23.

25	$A = \frac{1}{2} \times x \times 2x \times \sin 30^{\circ}$	$x = \sqrt{2A}$ shown	3	M1 $(A=)\frac{1}{2} \times x \times 2x \times \sin 30^\circ$
	$A = \frac{1}{2} \times 2x^2 \times 0.5$			A1 $A = x^2 \times 0.5$ or $A = \frac{x^2}{2}$ C1 for completion with all steps shown
	on.			
	OR			OR M1 height = $2x\sin 30 (= x)$
	$Height = 2x \sin 30^{\circ} = x$			A1 $A = x^2 \times 0.5 \text{ or } A = \frac{x^2}{2}$
	$A = \frac{x \times x}{2} = \frac{x^2}{2}$			C1 for completion with all steps shown
	OR			OR
	$Height = x \sin 30 = \frac{x}{2}$			M1 for height = $x \sin 30 = \frac{x}{2}$
	$A = \frac{1}{2} \times 2x \times \frac{x}{2} = \frac{x^2}{2}$			A1 $A = x^2 \times 0.5 \text{ or } A = \frac{x^2}{2}$
	2 2 2			C1 for completion with all steps shown

Pearson Edexcel - Wednesday 13 June 2012 - Paper 2 (Calculator) Higher Tier

24.

21	$4n^2 + 12n + 3^2 - (4n^2 - 12n + 3^2)$ = $4n^2 + 12n + 9 - 4n^2 + 12n - 9$	Proof	3	M1 for 3 out of 4 terms correct in expansion of either $(2n+3)^2$ or $(2n-3)^2$
	$= 24n$ $= 8 \times 3n$			or $((2n+3)-(2n-3))((2n+3)+(2n-3))$ A1 for $24n$ from correct expansion of both brackets A1 (dep on A1) for $24n$ is a multiple of 8 or $24n = 8 \times 3n$ or $24n \div 8 = 3n$

Pearson Edexcel - Thursday 5 November 2009 - Paper 3 (Non-Calculator) Higher Tier

23	x = 0.363636	Proof	3	M1 for $100x = 36.363636$ or $10000x = 3636.3636$
	100x= 36.363636			M1 (dep) for subtraction of both sides
	99x = 36			36 4
	$x = \frac{36}{3} = \frac{4}{3}$			A1 for $\frac{36}{99} = \frac{4}{11}$ from correct proof.
	$x = \frac{1}{99} = \frac{1}{11}$			99 11
				OR
	or			M1 starts long/short division of 11 into 4, set out
	10000 262626			correctly, with 0.36 seen on the top of the bus stop (oe)
	10000x = 3636.36			with a remainder of 7
	9999x = 3636			with a remainder of /
	$x = \frac{3636}{9999} = \frac{4}{11}$			M1(dep) Remainder of 4 after the remainder of 7 seen in
	9999 11			correct place
	or			A1 A41
	9900x = 3600 etc			A1 At least 2 remainders of 4 and one of 7 seen in the
				correct place and with a statement that the decimal will
				recur with a cycle length 2 because the remainders have a
				cycle length 2.

Pearson Edexcel - Thursday 5 November 2009 - Paper 3 (Non-Calculator) Higher Tier

26.

25	Let n be any integer	Proof	3	M1 Sight n and $n+1$ or $n-1$ and n
	Then a pair of consecutive integers are n			M1 sight of 2n+1 oe
	and $n+1$			A1 explanation of $2n+1$ eg 'it's odd' 'it's one more than
	Their sum = $2n + 1$			an even number' (n must have been defined as an integer
	Since n is an integer $2n$ is even			to earn the A1)
	so $2n + 1$ is odd			

OCR GSCE – Thursday 5 November 2020 – Paper 5 (Non-Calculator) Higher Tier

27.

14	(a)	$12a^{\frac{5}{2}}$ oe final answer	2	B1 for $ka^{\frac{5}{2}}$ oe or $12a^k$ $(k \neq 0)$	For B1 accept 12a
14	(b)	8a ¹⁵ final answer	3	B2 for 8a ⁵ or $\frac{8a^6}{a^{-9}}$ or ka^{15} $(k \neq 0)$ or B1 for ka^5 or $\frac{ka^6}{a^{-9}}$ or 8 seen $(k \neq 0)$	

OCR GSCE – Tuesday 5 November 2019 – Paper 4 (Calculator) Higher Tier

28.

5			4 <i>x</i> ² – 11 <i>xy</i> – 3 <i>y</i> ² final answer	M2 for three correct terms from $4x^2 - 12xy + [1]xy - 3y^2$ oe or M1 for two correct terms in the expansion above	M1 implied by two correct terms in answer
	l			and the time control to the and companies above	and the server terms are all the

OCR GSCE – Thursday 7 November 2019 – Paper 5 (Non-Calculator) Higher Tier

3	(a)	She added the terms oe 2a³	1	In all 3 parts any incorrect statement treat as choice Allow correct descriptions of what Martina should have done in each part See AG
3	(b)	She divided the powers oe x ⁸	1	See AG
3	(c)	She squared (½ × 6 × 5) oe 75	1	See AG

OCR GSCE - Thursday 6 June 2019 - Paper 5 (Non-Calculator) Higher Tier

30.

2	(a)	6a11	3	B2 for answer ka^{11} or $\frac{6a^{13}}{a^2}$ or $6 \times a^6 \times a^5$ or $6 \times a^8 \times a^3$ shown in working OR B1 for answer $6a^k$ or ka^{13} or for $3a^8 \times 2a^3$ or $3a^6 \times 2a^5$ shown in working	
	(b)	2.5 or $2\frac{1}{2}$ or $\frac{5}{2}$	3	M1 for correct first step e.g. $6x - 10 = 5$ M1 for $6x = 5 + 10$ FT their first step or for FT their $ax = b$ to $x = \frac{b}{-}$	Do not accept $\frac{15}{6}$ as final answer but allow to imply M1M1 Embedded answer scores M2 max
				or for Praidings – Brox – – a	where $\frac{b}{a}$ is a simplified fraction (improper or mixed number) or an integer e.g. M1 for $6x = 1$ leading to $x = \frac{1}{6}$

OCR GSCE – Thursday 6 June 2019 – Paper 5 (Non-Calculator) Higher Tier

31.

11	(a)	$10\sqrt{2}$ final answer	2	B1 for $2\sqrt{50}$ or $5\sqrt{8}$ or for correct answer seen then spoiled	
	(b)	2	1		

OCR GSCE – Tuesday 2 November 2017 – Paper 4 (Calculator) Higher Tier

32.

2	(a	a)	(i)	a ⁴	1	
			(ii)	b ¹⁵	1	
	(t	b)		x(6-x)	1	

OCR GSCE - Tuesday 2 November 2017 - Paper 4 (Calculator) Higher Tier

13	(a)	4 5	4	B2 for one correct solution	_
				OR B1 for $x^2 - 9x + 20 = 0$ M2 for $(x - 4)(x - 5) = 0$ or use of the formula with at most one error or M1 for two factors which when expanded give two terms correctly or use of the formula with at most two errors if 0 scored SC1 for correctly factorising their quadratic expression	
	(b)	$6x^3 + 23x^2 - 33x + 10$	4	M3 for a fully correct method with at most one error e.g. $(2x^2 + 9x - 5)(3x - 2) = 6x^3 + 27x^2 - 15x - 4x^2 - 18x + 10$ or better or M2 for a correct method to multiply two brackets e.g. $2x^2 + 10x - x - 5$ or $3x^2 + 15x - 2x - 10$ or better or M1 for a correct method with at most two errors or a correct method to multiply two brackets with at most one error	

OCR GSCE – Tuesday 6 November 2017 – Paper 5 (Non - Calculator) Higher Tier

34.

18	$(x+1)^2 - x^2$ oe	M2	M1 for <i>x</i> and <i>x</i> + 1 shown oe	For M2 or M1 Condone any two consecutive expressions written algebraically and condone reversal
	Expands all brackets correctly for their expression eg $x^2 + 2x + 1 - x^2$	M1		If reversed then brackets needed or all signs need to be correct
	2x + 1 is always odd oe	A1	With no errors seen and brackets expanded for their expressions	Condone $-2x - 1$ for reversal FT from <i>their</i> correct consecutive square expressions
			If 0 scored, SC1 for 2 correct numeric examples or correct reasoning with	
			consecutive odds and evens	eg square numbers 1, 4, 9, 16, go odd, even, odd etc, odd – even = odd, even – odd = odd

OCR GSCE – Thursday 8 June 2017 – Paper 5 (Non - Calculator) Higher Tier

15	(a)	(i)	$6\sqrt{2}$ final answer	2	M1 for $\sqrt{25 \times 2}$ or better seen	
		(ii)	$\frac{5\sqrt{6}}{3}$ final answer	2	M1 for $\frac{10}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}$ oe	For 2 marks accept $1\frac{2}{3}\sqrt{6}$

(b)	Identifies both errors and explains the correct steps e.g. Square not multiply by 2 oe negative power does not make answer negative it should be the reciprocal oe	2	B1 for each with no incorrect statement for either	Accept implication of error by a description of correct step e.g. should be squared should be reciprocal, should be 1/n, should be 1/64 Descriptions must be in words do not accept numeric examples alone
	1/16	1		SEE APPENDIX isw attempt to convert to decimal

OCR GSCE – Tuesday 13 June 2017 – Paper 6 (Calculator) Higher Tier

36.

16	а	3y ⁷	1 1 AO1.3a		
	b	$\frac{7x+2}{(x-1)(x+2)} \text{ or } \frac{7x+2}{x^2+x-2} \text{ as final}$ answer	3 3 AO1.3b	B1 for $(x-1)(x+2)$ or $x^2 + x - 2$ seen as a denominator M1 for $3(x+2) + 4(x-1)$ or $3x + 6 + 4x - 4$ soi	Condone missing final bracket. Accept not in fraction or seen in separate fractions

OCR GSCE – Sample Papers – Paper 4 (Calculator) Higher Tier

37.

20	(a)	$\frac{n-m}{n(n+1)}$	2 2 AO1.3b	M1 for $\frac{n(m+1) - m(n+1)}{n(n+1)}$
	(b)	$m < n \Rightarrow n - m > 0$ $\Rightarrow \frac{n - m}{n(n+1)} > 0$ $\Rightarrow \frac{m+1}{n+1} - \frac{m}{n} > 0$	2 2 AO2.4b	M1 for their ' $\frac{n-m}{n(n+1)}$ ' > 0

AQA GSCE – Tuesday 19 May 2020 – Paper 1 (Non - Calculator) Higher Tier

13(a)	(x+8)(x-5) or $(k=) 3or (x+5)(x-8) or (k=) -3or (x+10)(x-4) or (k=) 6or (x+4)(x-10) or (k=) -6or (x+20)(x-2) or (k=) 18or (x+2)(x-20) or (k=) -18or (x+40)(x-1) or (k=) 39or (x+1)(x-40) or (k=) -39or s=8 and t=5or 8-5$	M1	oe correct factorisation	
	3	A1	condone embedded ans	wer $x^2 + 3x - 40$
	Additional Guidance			
	$x^2 + sx - tx - st$ with no further working			M0A0
	Ignore incorrect factorisations in working	ng		

	Valid reason	B1	eg it should be -2 or 4×-5 isn't 0 or (2+2)(2-7) = -20 or 2+2=4 or $2+2 \neq 0$	
13(b)	'He didn't change the sign on the left	B1		
	'If you substitute 2 it does not give 0'	B1		
	x = 2 is wrong			B1
	x = -2 (and x = 7)	B1		
	x = -2 and $x = -7$	В0		
	'One solution is wrong' or 'Only one answer is correct'			В0
	x = 2	В0		
	Ignore statements which do not contr	Ignore statements which do not contradict a correct answer		

AQA GSCE – Thursday 8 June 2020 – Paper 3 (Calculator) Higher Tier 39.

	Alternative method 1 Working wit	h 3.47	
	10x = 34.7 or $100x = 347.7$	M1	oe multiplication by a power of 10 eg $1000x = 3477.7$ any letter
26	10x - x = 34.7 3.47 or $9x = 31.3$ with $10x = 34.7$ seen or 100x - 10x = 347.7 34.7 or $90x = 313$ with $100x = 347.7$ and $10x = 34.7$ seen or 100x - x = 347.7 3.47 or $99x = 344.3$ with 100x = 347.7 seen	M1dep	oe subtraction to eliminate recurring digits eg $1000x - 10x = 3477.7 34.7$ or $990x = 3443$ with $1000x = 3477.7$ and $10x = 34.7$ seen numbers must all be correct
	$x = 3.47$ stated and M2 scored and $9x = 31.3$ and $(x =) \frac{31.3}{9}$ and $\frac{313}{90}$ or $x = 3.47$ stated and M2 scored and $90x = 313$ and $(x =) \frac{313}{90}$ or $x = 3.47$ stated and M2 scored and $99x = 344.3$ and $(x =) \frac{344.3}{99}$ and $\frac{313}{90}$	A1	oe eg $x = 3.47$ stated and M2 scored and $990x = 3443$ and $(x =) \frac{3443}{990}$ and $\frac{313}{90}$

Mark scheme continues on the next three pages

	Alternative method 2 Working wi	th 0.47	
	10x = 4.7 or $100x = 47.7$	M1	oe multiplication by a power of 10 eg $1000x = 477.7$ any letter
	$10 \ x - x = 4.7 0.47$ or $9x = 4.3$ with $10x = 4.7$ seen or 100x - 10x = 47.7 4.7 or $90x = 43$ with $100x = 47.7$ and $10x = 4.7$ seen or 100x - x = 47.7 0.47 or $99x = 47.3$ with $100x = 47.7$ seen	M1dep	oe subtraction to eliminate recurring digits eg $1000x - 10x = 477.7 4.7$ or $990x = 473$ with $1000x = 477.7$ and $10x = 4.7$ seen numbers must all be correct
26 cont	$x = 0.47$ stated and M2 scored and $9x = 4.3$ and $(x =) \frac{4.3}{9}$ and $3\frac{4.3}{9}$ and $3\frac{313}{90}$ or $x = 0.47$ stated and M2 scored and $90x = 43$ and $(x =) \frac{43}{90}$ and $3\frac{43}{90}$ and $3\frac{313}{90}$ or $x = 0.47$ stated and M2 scored and $99x = 47.3$ and $(x =) \frac{47.3}{99}$ and $3\frac{47.3}{99}$ and $3\frac{313}{90}$	A1	oe eg $x = 0.47$ stated and M2 scored and $990x = 473$ and $(x =) \frac{473}{990}$ and $3\frac{473}{990}$ and $\frac{313}{90}$

Mark scheme continues on the next page

	Alternative method 3 Working wi	th 0.07	
	10x = 0.7 or $100x = 7.7$	M1	oe multiplication by a power of 10 eg $1000x = 77.7$ any letter
	10x - x = 0.7 0.07 or $9x = 0.7$ with $10x = 0.7$ seen or 100x - 10x = 7.7 0.7 or $90x = 7$ with $100x = 7.7$ and $10x = 0.7$ seen or 100x - x = 7.7 0.07 or $99x = 7.7$ with $100x = 7.7$ seen	M1dep	oe subtraction to eliminate recurring digits eg $1000x - 10x = 77.7 0.7$ or $990x = 77$ with $1000x = 77.7$ and $10x = 0.7$ seen numbers must all be correct
26 cont	$x = 0.07$ stated and M2 scored and $9x = 0.7$ and $(x =) \frac{0.7}{9}$ and $3.4 + \frac{0.7}{9}$ and $\frac{313}{90}$ or $x = 0.07$ stated and M2 scored and $90x = 7$ and $(x =) \frac{7}{90}$ and $3.4 + \frac{7}{90}$ and $\frac{313}{90}$ or $x = 0.07$ stated and M2 scored and $99x = 7.7$ and $(x =) \frac{7.7}{99}$ and $3.4 + \frac{7.7}{99}$ and $\frac{313}{90}$	A1	oe eg $x = 0.07$ stated and M2 scored and $990x = 77$ and $(x =) \frac{77}{990}$ and $3.4 + \frac{77}{990}$ and $\frac{313}{90}$

Additional guidance continues on the next page

	Additional Guidance				
	313 ÷ 90 = 3.47	M0M0A0			
	Alt 1 M1dep oe subtraction to eliminate recurring decimals includes $100x - 10x = 313$ with $100x = 347.7$ and $10x = 34.7$ seen or $90x = 347.7 34.7$ with $100x = 347.7$ and $10x = 34.7$ seen (apply same principle in Alt 2 and Alt 3)				
26 cont	Alt 2 equivalents for final part of A1 eg For $3\frac{43}{90}$ and $\frac{313}{90}$ allow $3 + \frac{43}{90}$ and $\frac{313}{90}$				
	Alt 3 equivalents for final part of A1 eg For $3.4 + \frac{7}{90}$ and $\frac{313}{90}$ allow $3 + \frac{4}{10} + \frac{7}{90}$ and $\frac{313}{90}$				

AQA GSCE – Tuesday 21 May 2019 – Paper 1 (Non - Calculator) Higher Tier 40.

	Correct factorisation of numerator $2(2x-4x^2)$ or $4(x-2x^2)$ or $x(4-8x)$ or $2x(2-4x)$ or $4x(1-2x)$ or correct factorisation of denominator $2(6x-3)$ or $3(4x-2)$ or $6(2x-1)$ or correct cancelling by 2 throughout	M1	oe with negative coeffici	ents	
	$\frac{2x-4x^2}{6x-3}$				
16	Correct fraction with numerator $4x(1-2x)$ or $-4x(2x-1)$ and denominator $6(2x-1)$ or $-6(1-2x)$ or $-\frac{4x}{6}$ or $\frac{-4x}{6}$ or $\frac{4x}{-6}$ or $\frac{2x(2-4x)}{-3(2-4x)}$ or $\frac{2x(2-4x)}{3(4x-2)}$	M1dep	oe with cancelling of 2 the eg $\frac{2x(1-2x)}{3(2x-1)} \text{ or } \frac{2x(1-2x)}{-3(1-2x)}$		
	$-\frac{2x}{3}$ or $-\frac{2}{3}x$	A1	allow $\frac{-2x}{3}$ or $\frac{2x}{-3}$		
	Additional Guidance				
	Allow multiplication signs up to M1M1				
	Allow -0.6 for $-\frac{2}{3}$				
	Do not allow -0.66 for $-\frac{2}{3}$				
	For the first M1 only, allow any correct attempts	ct factorisa	ation seen within multiple		

_

AQA GSCE – Tuesday 11 June 2019 – Paper 3 (Calculator) Higher Tier

	Alternative method 1 – answer written as a fraction				
	a ² on numerator	B1	a correctly simplified		
	b^3 on denominator or b^{-3} on numerator	B1	b correctly simplified		
	c cancelled and d on denominator or d^{-1} on numerator	B1	d correctly simplified		
	Alternative method 2 – answer writt	en only a	s a product		
	a^2	B1	a correctly simplified		
	b ⁻³	B1	b correctly simplified	d	
	d^{-1} and c cancelled	B1	d correctly simplified		
	Add				
15	If answer line is blank, marks can be				
	Do not award any marks if addition or attempt				
	Condone use of capital letters				
	Penalise use of × sign by one mark of awarded eg $a^2 \times b^{-3} \times d^{-1}$	B1B1			
	$\frac{a^2}{db^3}$ or $\frac{a^2d^{-1}}{b^3}$ or $\frac{a^2b^{-3}}{d}$ or a^2b^{-3}	B1B1B1			
	$\frac{a^2b^2}{db^5}$ or $\frac{a^2b^2d^{-1}}{b^5}$ or $a^2b^2d^{-1}b^{-5}$			B1B0B1	
	$\frac{a^3}{dab^3}$			B0B1B1	
	$\frac{a^2c}{cdb^3}$			B1B1B0	
	$\frac{a}{d} \times b^3$ use of × sign not penalised a	B0B0B1			
	$a^2 + b^{-3} - d^{-1}$				

AQA GSCE – Tuesday 6 November 2018 – Paper 1 (Non - Calculator) Higher Tier 42.

3 22 <i>a</i>	B1
----------------------	----

AQA GSCE – Thursday 8 November 2018 – Paper 2 (Calculator) Higher Tier 43.

	$\frac{6n^2}{n}$ + 2 n^3 or $6n$ + 2 n^3 or $6n^3$ – $6n$	M1	expands one bracket correctly allow $3 \times 2n$ for $\frac{6n^2}{n}$
	$\frac{6n^2}{n} + 2n^3 + 6n^3 - 6n$ or $6n + 2n^3 + 6n^3 - 6n$	M1dep	fully correct expansion allow $3 \times 2n$ for $\frac{6n^2}{n}$
20	$8n^3$ and $(2n)^3$	A1	must have seen M1M1 oe eg $8n^3$ and $2n \times 2n \times 2n$ or $8n^3$ and $\sqrt[3]{8n^3} = 2n$ condone $8n^3$ and 2^3n^3
	Additional Guidance		
	Do not allow $\frac{2n^2 \times 3}{n}$ for $\frac{6n^2}{n}$		

AQA GSCE – Thursday 8 November 2018 – Paper 2 (Calculator) Higher Tier 44.

22	$3(x-2)$ or $x^3(x^2-4)$ or $x^2(x^3-4x)$ or $x(x^4-4x^2)$ or $(x^4+2x^3)(x-2)$ or $x^3(x+2)(x-2)$ or $x^2(x^2+2x)(x-2)$ or $x(x^3+2x^2)(x-2)$	M1	numerator or denominat oe eg $x^2(x + 2)(x^2 - 2x)$	
	$3(x-2)$ and $x^3(x+2)(x-2)$ or $3(x-2)$ and $(x^4+2x^3)(x-2)$ or $3(x-2)$ and $x^2(x^2+2x)(x-2)$ or $3(x-2)$ and $x(x^3+2x^2)(x-2)$	A1	numerator and denomin each with factor (x – 2)	ator factorised
	$\frac{x^3(x+2)}{3}$ or $\frac{x^2(x^2+2x)}{3}$ or $\frac{x(x^3+2x^2)}{3}$ or $\frac{x^4+2x^3}{3}$	A1	oe fully simplified express eg $\frac{1}{3}x^3(x+2)$ or $\frac{x^4}{3}$ +	- 9
	Additional Guidance			
	$\frac{x^3(x+2)}{3}$ followed by further incorrect work			M1A1A0
	$\frac{x^3 \times (x+2)}{3}$ or $\frac{1}{3} \times x^3 (x+2)$			M1A1A0
	$3 \times (x-2)$ and $x^3 \times (x+2) \times (x-2)$			M1A1
	$3 \times (x-2)$ or $x^3 \times (x^2-4)$			M1
	1(3x-6) or $-1(6-3x)$			MO
	-3(2 - x)			M1
	$-3(2-x)$ and $-x^3(x+2)(2-x)$			M1A1

AQA GSCE – Monday 24 May 2018 – Paper 1 (Non - Calculator) Higher Tier

45.

3	$5a-4a^2$	B1	
1			

AQA GSCE – Thursday 7 June 2018 – Paper 2 (Calculator) Higher Tier 46.

	Alternative method 1		
13	Any correct factorisation of the numerator or the denominator	M1	eg $8(x^2 - 1)$ or $4(x + 1)$ or $2(4x^2 - 4)$ or $2(2x + 2)$ or $4(2x^2 - 2)$ or $(4x + 4)(2x - 2)$ or $(4x - 4)(2x + 2)$ or $(8x + 8)(x - 1)$ or $(8x - 8)(x + 1)$ or $-2(-4x^2 + 4)$ does not need to be seen in a fraction may be implied eg $\frac{2x^2 - 2}{x + 1}$ or $\frac{4x^2 - 4}{2x + 2}$
	Correct fraction with a common algebraic factor in the numerator and the denominator	A1	eg $\frac{8(x+1)(x-1)}{4(x+1)}$ or $\frac{2(2x+2)(2x-2)}{2(2x+2)}$ or $\frac{2(x+1)(x-1)}{(x+1)}$ or $\frac{4(x+1)(2x-2)}{4(x+1)}$ or $\frac{(4x+4)(2x-2)}{4x+4}$
	2x - 2 or $a = 2$ and $b = -2$ with M1A1 scored	A1	

Mark scheme and additional guidance continues on the next page

	Alternative method 2			
	$4ax^2 + 4ax + 4bx + 4b$	M1	oe expands $(ax + b)(4x + 4)$ least 3 terms correct	to 4 terms with at
	Any 2 of $4a = 8$ $4b = -8$ $4a + 4b = 0$	A1		
13	<pre>a = 2 and b = -2 and shows that third equation is satisfied with M1A1 scored</pre>	A1		
cont	Additional Guidance			
	M1 is implied by the first A1 eg $\frac{8(x+1)(x-1)}{4(x+1)}$			M1A1
	$1(8x^2 - 8)$ or $-1(8 - 8x^2)$ etc	MO		
	2x – 2 without M1A1 scored			M0A0A0
	M1A1 scored and $2x - 2$ followed by attempt to solve $2x - 2 = 0$			M1A1A1
	M1A1 scored and $2x - 2$ followed by $2(x - 1)$			M1A1A1
	M1A1 scored followed by $2(x - 1)$ but	t 2x – 2 no	ot seen	M1A1A0

AQA GSCE – Thursday 7 June 2018 – Paper 2 (Calculator) Higher Tier 47.

	Alternative method 1 Working wit		
	10x = 27.5 or 100x = 275.5	M1	oe multiplication by a power of 10 eg $1000x = 2755.5$ any letter
27	10x - x = 27.5 2.75 or $9x = 24.8$ with $10x = 27.5$ seen or 100x - 10x = 275.5 27.5 or $90x = 248$ with $100x = 275.5$ and $10x = 27.5$ seen or 100x - x = 275.5 2.75 or $99x = 272.8$ with 100x = 275.5 seen	M1dep	oe subtraction to eliminate recurring digits eg $1000x - 10x = 2755.5 27.5$ or $990x = 2728$ with $1000x = 2755.5$ and $10x = 27.5$ seen numbers must all be correct
	$x = 2.75$ stated and M2 scored and $9x = 24.8$ and $x = \frac{24.8}{9} = \frac{124}{45}$ or $x = 2.75$ stated and M2 scored and $90x = 248$ and $x = \frac{248}{90} = \frac{124}{45}$ or $x = 2.75$ stated and M2 scored and $90x = 275$ stated and M2 scored and $99x = 272.8$ and $x = \frac{272.8}{99} = \frac{124}{45}$	A1	oe eg $x = 2.75$ stated and M2 scored and $990x = 2728$ and $x = \frac{2728}{990} = \frac{124}{45}$

Mark scheme continues on the next page

	Alternative method 2 Working with 0.75				
	10x = 7.5 or $100x = 75.5$	M1	oe multiplication by a power of 10 eg $1000x = 755.5$ any letter		
	10x - x = 7.5 0.75 or $9x = 6.8$ with $10x = 7.5$ seen or 100x - 10x = 75.5 7.5 or $90x = 68$ with $100x = 75.5$ and $10x = 7.5$ seen or 100x - x = 75.5 0.75 or $99x = 74.8$ with $100x = 75.5$ seen	M1dep	oe subtraction to eliminate recurring digits eg $1000x - 10x = 755.5 7.5$ or $990x = 748$ with $1000x = 755.5$ and $10x = 7.5$ seen numbers must all be correct		
27 cont	$x = 0.75$ stated and M2 scored and $9x = 6.8$ and $x = \frac{6.8}{9}$ and $2\frac{6.8}{9} = \frac{124}{45}$ or $x = 0.75$ stated and M2 scored and $90x = 68$ and $x = \frac{68}{90}$ and $2\frac{68}{90} = \frac{124}{45}$ or $x = 0.75$ stated and M2 scored and $99x = 74.8$ and $x = \frac{74.8}{99}$ and $x = \frac{74.8}{99}$ and $x = \frac{74.8}{99}$	A1	oe eg $x = 0.75$ stated and M2 scored and $990x = 748$ and $x = \frac{748}{990}$ and $2\frac{748}{990} = \frac{124}{45}$		

Mark scheme continues on the next page

	Alternative method 3 Working with 0.05				
	10x = 0.5 or $100x = 5.5$	M1	oe multiplication by a power of 10 eg $1000x = 55.55$ any letter		
	10x - x = 0.5 0.05 or $9x = 0.5$ with $10x = 0.5$ seen or 100x - 10x = 5.5 0.5 or $90x = 5$ with $100x = 5.5$ and $10x = 0.5$ seen or 100x - x = 5.5 0.05 or $99x = 5.5$ with 100x = 5.5 seen	M1dep	oe subtraction to eliminate recurring digits eg $1000x - 10x = 55.5 0.5$ or $990x = 55$ with $1000x = 55.5$ and $10x = 0.5$ seen numbers must all be correct		
27 cont	$x = 0.05$ stated and M2 scored and $9x = 0.5$ and $x = \frac{0.5}{9}$ and $2.7 + \frac{0.5}{9} = \frac{124}{45}$ or $x = 0.05$ stated and M2 scored and $90x = 5$ and $x = \frac{5}{90}$ and $2.7 + \frac{5}{90} = \frac{124}{45}$ or $x = 0.05$ stated and M2 scored and $99x = 5.5$ and $x = \frac{5.5}{99}$ and $2.7 + \frac{5.5}{99} = \frac{124}{45}$	A1	oe eg $x = 0.05$ stated and M2 scored and $990x = 55$ and $x = \frac{55}{990}$ and $2.7 + \frac{55}{990} = \frac{124}{45}$		

Additional guidance continues on the next page

	Additional Guidance				
	124 ÷ 45 = 2.75	M0M0A0			
	Alt 1 M1dep oe subtraction to eliminate recurring decimals includes $100x - 10x = 248 \text{ with } 100x = 275.5 \text{ and } 10x = 27.5 \text{ seen}$ or $90x = 275.5 27.5 \text{ with } 100x = 275.5 \text{ and } 10x = 27.5 \text{ seen}$ (apply same principle in Alts 2 and 3)				
27 cont	Alt 2 equivalents for final part of A1 $eg For 2 \frac{68}{90} = \frac{124}{45}$ $allow 2 + \frac{68}{90} = \frac{124}{45}$				
	Alt 3 equivalents for final part of A1 eg For 2.7 + $\frac{5}{90} = \frac{124}{45}$ allow 2 + $\frac{7}{10}$ + $\frac{5}{90} = \frac{124}{45}$				

AQA GSCE – Tuesday 12 June 2018 – Paper 3 (Calculator) Higher Tier 48.

	Alternative method 1		
	$\frac{2(x+4)}{6x}$ or $(-)\frac{15}{6x}$		oe
	or $\frac{2x+8}{6x}$ or $(-)\frac{15}{6x}$		A correct fraction using a common denominator for one of the given fractions
	2x(x+4) 15x	M1	Accept for this mark only eg 2(3x) for 6x
	or $\frac{2x(x+4)}{6x^2}$ or $(-)\frac{15x}{6x^2}$		3(5) for 15 (2x)(3x) for 6x ²
	or $\frac{2x^2 + 8x}{6x^2}$ or $(-)\frac{15x}{6x^2}$		First fraction can be written as separate
			fractions eg $\frac{2x}{2(3x)}$ + $\frac{8}{2(3x)}$
18	$\frac{2(x+4)}{6x}$ and $(-)\frac{15}{6x}$ or $\frac{2x+8}{6x}$ and $(-)\frac{15}{6x}$		oe A correct fraction using a common denominator for both of the given fractions First fraction can be written as separate
	or $\frac{2x(x+4)}{6x^2}$ and $(-)\frac{15x}{6x^2}$	A1	fractions eg $\frac{2x}{6x} + \frac{8}{6x}$
	or $\frac{2x^2 + 8x}{6x^2}$ and $(-)\frac{15x}{6x^2}$		
	$\frac{2x-7}{6x}$		Accept eg $\frac{2x + -7}{6x}$
	or $\frac{2kx-7k}{6kx}$,	A1	Do not ignore further working
	where k is a constant value		

	Alternative method 2			
18 cont	$\frac{2(x+4)}{6x} \text{ or } (-)\frac{15}{6x}$ or $\frac{2x+8}{6x}$ or $(-)\frac{15}{6x}$ or $\frac{2x(x+4)}{6x^2}$ or $(-)\frac{15x}{6x^2}$ or $\frac{2x^2+8x}{6x^2}$ or $(-)\frac{15x}{6x^2}$	M1	oe A correct fraction using a denominator for one of the Accept for this mark only eg $2(3x)$ for $6x$ $3(5)$ for 15 $(2x)(3x)$ for $6x^2$ First fraction can be writte fractions eg $\frac{2x}{2(3x)} + \frac{8}{2(3x)}$	ne given fractions
	$\frac{2x+8-15}{6x}$ or $\frac{2x-7}{6x}$ or $\frac{2kx-7k}{6kx}$, where k is a constant value	A1	Allow one error in numer Accept eg $\frac{2x + -7}{6x}$ Must be $6x$ or a multiple of	
	$\frac{2x-7}{6x}$ or $\frac{2kx-7k}{6kx}$, where k is a constant value	A1	Accept eg $\frac{2x + -7}{6x}$ Do not ignore further wor	king
	Add	ditional G	Buidance	
	Use the method that gives the greater mark			
	$\frac{2x^2-7x}{6x^2}$			M1A1
	$\frac{2x-7}{6x} = \frac{-5}{6x}$			M1A1A0
	$\frac{15x}{6x^2} - \frac{2x^2 + 8x}{6x^2}$ (order of fractions rev	/ersed)		M1A0A0

AQA GSCE – Thursday 6 November 2017 – Paper 2 (Calculator) Higher Tier

11	$\frac{x^2}{2x^2+1}$	B1		
	Add	ditional G	Guidance	

AQA GSCE – Wednesday 8 November 2017 – Paper 3 (Calculator) Higher Tier

50.

	$x^2 - 8x - 8x + 64$	M1	on rid	
	$x^2 - 16x + 64$	A1	Ignore fw eg if attempting Do not ignore fw if attemp	
	Ad	lditional	Guidance	
	$x^2 - 16x (+ k)$ $k \neq 64$			M1A0
5	$x^2 - 8x + 64$			M1A0
	$x^2 - 16x + 64 = -15x^3 + 64$			M1A0
	$x^2 - 8x + 8x + 64$ (one error)			M1A0
	$x^2 + 8x + 8x + 64$ (one error)			M1A0
	$x^2 - 6x + 8x + 64$ (two errors)			M0A0
	x^2 + 64 (two errors)			M0A0

AQA GSCE – Wednesday 25 May 2017 – Paper 1 (Non - Calculator) Higher Tier

51.

_				
Г				
- 1	1	28	R1	
	•	2	01	

AQA GSCE – Tuesday 13 June 2017 – Paper 3 (Calculator) Higher Tier

Alternative method 1 – completing the square					
	$(x+\frac{1}{2})^2+$	M1			
	$(x+\frac{1}{2})^2-(\frac{1}{2})^2+1$		oe		
	or $(x + \frac{1}{2})^2 - \frac{1}{4} + 1$	A1			
	or $(x+\frac{1}{2})^2+\frac{3}{4}$				
	$(x + \frac{1}{2})^2 \ge 0$ and $\frac{3}{4} > 0$	A1	oe		
	and always positive				
	Alternative method 2 – real roots				
27	$\frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times 1}}{2 \times 1}$		oe		
	or a correct sketch showing a quadratic curve with turning point above the x-axis	M1			
	States no values on x-axis	A1	oe		
	States no values on x-axis		oe		
	and (minimum value =) $\frac{3}{4}$	A1			
	Alternative method 3 – Calculus				
	2x + 1 = 0	M1			
	$x = -\frac{1}{2}$	A1			
	(minimum value =) $\frac{3}{4}$	A1			

	Alternative method 4 – Explanation method			
	If $x \ge 0$,		Accept $x > 0$ for $x \ge 0$	
	$x^2 \ge 0$ and $x \ge 0$ (1 > 0)			
	so x ² + x + 1 > 0		B2 for two correct stateme	nts
			B1 for one correct stateme	nt
	and			
	If -1 < x < 0			
27	$x^2 > 0$ and $x + 1 > 0$	B3		
cont	so $x^2 + x + 1 > 0$			
	and			
	If x ≤ −1			
	$x^2 > x$ and $x^2 + x > 0$			
	so $x^2 + x + 1 > 0$			
	Ad			
	Calculating pairs of coordinates alone			M0A0A0

AQA GSCE – Sample Paper 1 (Non - Calculator) Higher Tier

53.

26	$\frac{10}{3\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \text{or} \frac{10\sqrt{5}}{15}$ $\frac{10}{3\sqrt{5}} \times \frac{3\sqrt{5}}{3\sqrt{5}} \text{or} \frac{30\sqrt{5}}{45}$ or $\frac{\sqrt{20}}{3}$	M1	oe Must multiply numerator and denominator eg $\frac{10}{\sqrt{45}}$ is M0 $\frac{10}{\sqrt{45}} \times \frac{\sqrt{45}}{\sqrt{45}}$ is M1
	$\frac{2\sqrt{5}}{3}$	A1	

AQA GSCE – Sample Paper 2 (Calculator) Higher Tier

3	$a + 20a^2$	B1	